Mathematics

Standards Based Report Card 2023-2024

2nd Grade

Scoring Rubric:

3: Meets expectations
2: Approaching expectations
1: Beginning to learn expectations
Blank Box: Not assessed
IE: Insufficient Evidence

Math Priority Standards	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Demonstrate fluency for addition and subtraction within 20 2.RA.A. 1 Demonstrate fluency with addition and subtraction within 20. (Know all sums of two one-digit numbers. The starting point for subtraction problems should be within 20. While automaticity of basic facts is desired, quick use of strategies may suffice. Fluency refers to accuracy and efficiency and does not equate to memorization.)				
Adds and subtract within 100 using a number line 2.GM.C. 9 Represent whole numbers as lengths on a number line, and represent whole-number sums and differences within 100 on a number line.				
Solves problems involving money 2. GM.D. 12 - Find the value of combinations of dollar bills, quarters, dimes, nickels, and pennies, using \$ and $¢$ symbols appropriately. (Example: If you have 2 dimes and 3 pennies, how many cents do you have?- Standard does not mean to add/subtract with decimals)				
Tells and writes time to the nearest 5 minute interval 2.GM.D. 10 Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.				
Compares numbers using symbols $\geqslant,<$, or $=$ 2.NBT.A. 5 Compare two three-digit numbers using symbols $\gg=$ or, $<$ (compare numbers based on the meaning of tens and ones)				
Flexibly adds and subtracts within 1000 using a variety of strategies 2.NBT.B. 8 Add or subtract within 1000, and justify the solution. (The expectation of the student is to add and/or subtract with numbers and results within 1000, (including situations requiring composing and decomposing hundreds and tens) and justify answers using concrete models, drawings or symbols which convey strategies connected to place value understanding.)				
Measure lengths in standard units 2.GM.B. 5 Analyze the results of measuring the same object with different units. (e.g. Measure your pencil in inches and in centimeters.)				
Solve Problems using picture graphs, bar graphs, and line plots				

2.DS.A.4 Solve problems using information presented in line plots, picture graphs and bar graphs (solve simple addition and subtraction (put-together, take-apart, and compare) problems using information presented in a graph)			
Demonstrate equal shares of shapes 2.GM.A.3a Demonstrate that equal shares of identical wholes need not have the same shape. (The expectation of the student is to partition circles and rectangles into two, three, or four equal shares; describe the shares using the words, halves, thirds, half of, a third of, etc. and describe the whole as two halves, three thirds, etc. Demonstrate that the equal shares of identical wholes need not have the same shape.)			

Priority Standard	2.RA.A. 1 Demonstrate fluency with addition and subtraction within 20. (Know all sums of two one-digit numbers. The starting point for subtraction problems should be within 20. While automaticity of basic facts is desired, quick use of strategies may suffice. Fluency refers to accuracy and efficiency and does not equate to memorization.) Report card: Demonstrate fluency for addition and subtraction within 20	
Learning Targets	- I know how to fluently (accurately, efficiently, selecting the best strategy, and flexibly) add and subtract within 10 such as - subitizing - counting on and counting back - Decompose and recompose numbers - Doubles and near doubles - Combinations of 10 - Make a 10 (and some more) - I can participate in a number talk and defend my strategy on how I visualized (i.e. seeing a ten frame, number line, story, dice, etc.)the answer. (MP3) - I can explain the relationship between addition and subtraction. (MP1)	
Common Misconceptions	- Do not understand the concept of addition and subtraction and/or which operation to use - Do not understand the structure or meaning of an addition or subtraction number sentence - Not understanding the relationship between addition and subtraction - Do not recognize that teen numbers can be decomposed and composed to subtract - Decompose the lesser number and make a ten but subtract the wrong number - Count on from the lesser number using the lesser number as the first count	
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student fluently adds and subtracts numbers within 20 using a variety of strategies including subitizing, counting on/back, doubles, near doubles, Making Tens, Tens and some more.	Student adds and subtracts numbers within 20 with moderate accuracy. Student may sometimes need assistance in selecting the best strategy for efficiency.	Student adds and subtracts numbers within 20 inconsistently. Student requires concrete or visual aids to solve problems within 20.
Next Level	- Flexibly add and subtract within 100	

| Priority Standard | 2.GM.C.9 Represent whole numbers as lengths on a number line, and represent whole-number sums
 and differences within 100 on a number line.
 Report Card: Adds and subtracts within 100 using a number line |
| :---: | :--- | :--- |
| Learning Targets | - I know and flexibly use property rules (commutative, identify, and associative). (MP2)
 - I can explain how addition and subtraction are the reverse processes of each other.(MP1)
 - I can explain how I added or subtracted numbers to a peer. (MP6)
 - I can write an equation using precise language and symbols to add or subtract numbers within
 100. (MP6)
 - I can model how to add and subtract within 100 using a number line.
 - I can explain how using a number line to add and subtract is related to length.
 - I can recognize number patterns within 100 to add and subtract.(MP8) |
| I can use strategies, such as counting on, decomposing and recomposing numbers, doubles, | |
| and counting back to add and subtract within 100. (MP1) | |

Priority Standard	2. GM.D. 12 - Find the value of combinations of dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and ϕ symbols appropriately. (Example: If you have 2 dimes and 3 pennies, how many cents do you have?- Standard does not mean to add/subtract with decimals) Report Card: Solves problems involving money
Learning Targets	- I can solve word problems involving either dollars or cents. (MP1, MP4, MP6) - I can look for patterns in counting money and use those patterns to help count totals. (MP7, MP8) - I can make different combinations of coins (quarters, dimes, nickels, pennies) to equal a specified number less than one dollar. (MP2) - I can make different combinations of dollars (using ones, fives, and tens) to equal a specified number. (MP2) - I can write money amounts using dollars and cents symbols correctly.
Common Misconceptions	- Confuses coin names and values - Adds number of coins/bills instead of the values of the coins/bills - Incorrectly skip counts - Makes and addition or subtraction error or uses incorrect operation
Meeting the Standard 3	Approaching the Standard Beginning to Learn 2
Student can consistently solve word problems involving money (dollar bills and coins) and make different combinations of dollars or coins to equal a specified amount.	Student can solve word problems with moderate accuracy involving money (dollar bills and coins) and/or make different combinations of dollars or coins to equal a specified amount. Student is inconsistent when solving word problems with money (dollar bills and coins) and when making different combinations of dollars or coins to equal a specified amount.
Next Level	- Making change - Adding dollars and coins together - Operations involving decimals and place values up to the hundredths place (Decimal is a 4th grade skill) - Understanding the relationship between fractions and decimals and money

Priority Standard	2.GM.D. 10 Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m. Report Card: Tell and write time to the nearest 5 minute interval	
Learning Targets	- I know that I can connect skip counting by 5 s to tell time on an analog clock. - I can determine if a specific time or activity is in the a.m. or p.m. (MP1, MP6) - I can tell time to the 5 minute interval on an analog clock, using a.m. and p.m. (MP6) - I can write time to the 5 minute interval on an analog clock. (MP6)	
Common Misconceptions	- Confuse minute and hour hands - Incorrectly counts by 5's - Thinks that when the hour hand is pointing between 2 numbers, the hour hand corresponds to the larger number - Thinks the number the minute hand is pointing to is the number of minutes past the hour - Midnight/noon confusion with AM and PM	
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student can consistently tell and write time from analog and digital clocks to the nearest five minutes. Student can determine if a specific time/activity is in the a.m. or p.m.	Student has moderate accuracy when telling and writing time from analog and digital clocks to the nearest five minutes and/ or when determining if a specific time/activity is in the a.m. or p.m.	Student is inconsistent when telling and writing time from analog and digital clocks to the nearest five minutes and determining if a specific time/activity is in the a.m. or p.m.
Next Level	- Time to the minute - Elapsed time	

Priority Standard	2.NBT.A. 5 Compare two three-digit numbers using symbols >, $=$ or, < (compare numbers based on the meaning of hundreds,tens and ones) Report Card: Compares numbers using symbols >, <, or =	
Learning Targets	- I can compare three digit numbers b - I can understand that both sides of a - I can use the equal sign to make the - I can read the comparison from left t - I can use the greater than symbol ($>$) - I can use the less than symbol (<) to - I can explain which comparison symb	sed on hundreds, tens and ones equal sign should have the same value. atement true right interpreting the symbols compare numbers up to three digits mpare numbers up to three digits to use when looking at two numbers.
Common Misconceptions	- Does not understand what the equal sig - Confuses the greater than and less than - Does not read the comparison from left	means ymbols right
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student can consistently compare two three-digit numbers using symbols and explain why the symbol was used.	Student inconsistently compares two three-digit numbers with symbols. Or, can only explain whether the statement is correct with just one symbol.	Student needs support to determine which symbol should be used when comparing two three-digit numbers.
Next Level	- Determines which symbol to use when using expressions in the equation or inequality.	

Power Standard	2.NBT.B. 8 Add or subtract within 1000, and justify the solution. (The expectation of the student is to add and/or subtract with numbers and results within 1000, (including situations requiring composing and decomposing hundreds and tens) and justify answers using concrete models, drawings or symbols which convey strategies connected to place value understanding.) Report Card: Flexibly adds and subtracts within 1000 using a variety of strategies
Learning Targets	- I know and flexibly use property rules (commutative, identify, and associative). (MP2) - I can explain how addition and subtraction are the reverse processes of each other.(MP1) - I can explain how I added or subtracted numbers to a peer. (MP6) - I can write an equation using precise language and symbols to add or subtract numbers within 1000. (MP6) - I can model how to add and subtract within 1000. (MP4) - I can recognize number patterns within 1000 to add and subtract.(MP8) - I can use strategies, such as counting on, decomposing and recomposing numbers, doubles, and counting back to add and subtract within 1000. (MP1)
Common Misconceptions	- Add or subtract single-digit numbers incorrectly - Regroup ones incorrectly or forget to regroup the ones - Decompose numbers into tens and ones incorrectly - Add the correct number to one addend to make the next ten, but then forget to subtract it from the other addend, or subtract an incorrect number - Leave out any step in a multi-step method
Meeting the Standard 3	Approaching the Standard Beginning to Learn $\mathbf{2}$
Student adds and subtracts numbers within 1000 with high accuracy and efficiency. Student can justify their solution explaining their strategy and/or models	Student adds and subtracts numbers within 1000 with moderate accuracy. Sometimes they may not be able to explain their strategy and/or model.
Next Level	- Add and subtract beyond 1000 using multiple strategies, including standard algorithm

Priority Standard	2.GM.B. 5 Analyze the results of measuring the same object with different units. (e.g. Measure your pencil in inches and in centimeters.) Report Card: Measure lengths in standard units	
Learning Targets	- I can measure several objects to the MP6) - I can measure the same object (ex. D MP6) - I can recognize that the size of the me to measure the object. - I can show my measurements by mak whole-number units. (MP4)	arest whole unit. (ex. 5 objects from your desk) (MP5, ferent sized pencils) to the nearest whole unit. (MP5, asurement unit is related to the number of units needed g a line plot where the horizontal scale is marked off in
Common Misconceptions	- Measure objects not starting at 0 on th - Misalign the ruler with the object - Confuses units (inches and cm) - Reads ruler incorrectly - Counts all marks, not just the whole-u - Leave out a number that is within the - Misplaces X's on line plots - Incorrectly labels line plot or misidentif	ruler it marks when labeling a ruler nge show on the line plot es information
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student can consistently measure objects with high accuracy to the nearest whole unit. Student can recognize that when using a smaller unit of measure they will have a larger number to represent the length or when using a larger unit of measure they will have a smaller number to represent the length.	Student can sometimes measure objects to the nearest whole unit. Student may not understand that the size of the measurement unit is related to the number of units needed to measure the object.	Student measures objects inconsistently and needs support to determine which unit of measure is related to larger or smaller units.
Next Level	- Measure to half inch, quarter inch	

Priority Standard	2.DS.A. 4 Solve problems using information presented in line plots, picture graphs and bar graphs (solve simple addition and subtraction (put-together, take-apart, and compare) problems using information presented in a graph) Report card: Solve Problems using picture graphs, bar graphs, and line plots	
Learning Targets	- I can ask questions about the data collected using mathematical vocabulary (total, in all, how many more, how many less, etc.). (MP6) - I can interpret what I learned from the data to answer addition and subtraction questions (put-together, take apart, compare, and addition of three whole numbers). (MPI) - I can listen to others and explain representations using mathematical vocabulary. (total, in all, how many more, how many less, etc.). (MP1,MP3)	
Common Misconceptions	- When creating their own graphs or charts, students may struggle to line up pictures or tally's resulting in false conclusions such as which category has more or less.	
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student is able to independently draw conclusions and accurately solve problems about the data using picture graphs, bar graphs, and line plots.	Student can solve problems using a picture graph, bar graph, and line plots, but may need support to draw conclusions about the graphs. Or, student may be able to solve and draw conclusions with some types of graphs but not all.	Student needs support to draw conclusions and solve problems about the data using picture graphs, bar graphs, and line plots.
Next Level	- Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. - Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	

Priority Standard	2.GM.A.3a Demonstrate that equal shares of identical wholes need not have the same shape. (The expectation of the student is to partition circles and rectangles into two, three, or four equal shares; describe the shares using the words, halves, thirds, half of, a third of, etc. and describe the whole as two halves, three thirds, etc. Demonstrate that the equal shares of identical wholes need not have the same shape.) **only words are used to describe the fractional amount - third grade the numaric symbols are used. Report Card: Demonstrate equal shares of shapes	
Learning Targets	- I can partition or divide circles and rectang - I can partition or divide circles and rectang - I can partition or divide circles and rectangl - I can describe parts of a shape as a whole, - I can describe how when a shape is partitio smaller than the original whole.	into two equal parts. s into three equal parts. s into four equal parts alves, thirds, fourths, or quarters. ed into more than one part each part is now
Common Misconceptions	- Parts must be equal to be called halves, thi - All shapes are easily halved by adding a ver	ds, or fourths ical or horizontal line through the middle.
Meeting the Standard 3	Approaching the Standard 2	Beginning to Learn 1
Student can consistently divide circles and rectangles into two, three, and four equal parts while describing each new part with the correct name (half, third, fourth quarter). Student can also recognize halves, thirds, and fourths when looking at a partitioned shape.	Student can partition circles and rectangles into two, three, and four parts but may inconsistently label each part as half, third, fourth, or quarters. Student may struggle to identify and name equal parts of a whole.	Student needs support to recognize partitioned shapes as halves, thirds, fourths, or quarters of a whole. Student is unable to create equal parts of circles and rectangles.
Next Level	- Recognize, draw and identify other 2D/3D shapes - Categorize shapes based on attributes	

